Lecture 1

CLASSIFICATION OF IMAGES USING A DATA DRIVEN APPROACH:
INTRODUCTION
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About the lectures ..
(and me)

Slides of the lectures and additional lectures
notes with additional material
can be found at:

kt{'pS://f:‘m)url.com/l'eackihguhibozozlf

We are also on social media, if you want to follow us:

You can always contact me at
cacquist@uni-koeln.de for questions on @EXPATS _ideassds
the lectures or on whatever (i.e. master

thesis, Erasmus, living in Germany etc), |
am happy to help you

m @EXPATS-ideasqds
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The problem of image classification or... assigning a
label to an image with a computer

The simplest data driven approach: a linear
classifier and a loss function

Learning process via optimization (and the
various processes behind it)
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The problem of image classification or... assigning a label to an image with a computer



Assigning a label to an image with a computer
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What a human sees in BN What a computer sees
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Color images are tri-dimensional arrays of integers ranging from O to 255,
Their dimension is: N_pixels_width x N_pixels_height x 3,

3 represents the three colors provided in the RGB, i.e. Red, Green and Blue.
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How to write down an algorithm that classifies

iImages?

There's not, if you think about it, a straightforward strategy to classify images.



Data driven approach ..or learn from the data

1) Collect as many samples as you can

of images of each of the selected Illﬁ
Oy

classes

T

2) Learn visual characteristics
that can be identified by looking

at the pictures in each class.




Example of a classifier: the k-nearest neighbor
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INPUT: N images with N labels, each in one of the D classes of the dataset. This dataset is called the training

dataset.

The CIFARIO dataset contains
60000 color images in 10 classes,
with 6000 images per class. Here
we can see 10 random images for

each class.

In the class

dog, we can "_'$

find very
diverse
images of
dogs

TRAINING: To get trained, K-nn
needs to memorize the labels of all
Images.
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Exampie of 10 random images for the 10 classes from the
CIFARIO dataset, available at
https.//www.cs.toronto.edu/%7Ekriz/cifar.html
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TEST: calculation of the distance between images ( in the example with L1 distance)

test image training image ~ pixel-wise absolute value differences

o6 | 32 |1 10 | 18 10 | 20 | 24 | 17

8 | 10 100

12 | 16 | 178 | 170

4 | 32 (233 | 112

Graphical representation of the calculation of the L1 pixelwise distance between an test and an training image. Image reinterpreted based on content in https://cs23In.github.o/classification/

1) pixelwise absolute value difference

2) sum of all terms (46 + 12 + 14 + 1+ 82 + 13 + ....22+108) = 456
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TEST: finding the most recurrent label

The parameter k tells how many of the nearest
neihbor to consider: in the example here k =5.

The label that is picked for classifying the new
Image is the one that is most recurring in the
selected ensemble.

In the case of the figure, the dark triangle.

k is a hyperparameter

HYPERPARAMETERS: ALL THE
PARAMETERS THAT ARE NEEDED TO
SET UP THE CLASSIFIER, OF WHICH WE
DONT KNOW A PROPER VALUE A
PRIORI
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Example of K-nn algorithm with k=5 and 3 classes. In the figure, we can see that the predicted label of the
grey triangle is the one that among the k-nearest neighbors, occurs more frequently, 3 times compared to 1
time for each of the other classes (Image from Sebastian Raschka’s course page ‘

stat.wisc.edu/%7Esraschka/teaching/stat479-fs2018/).
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On hyperparameters and overfitting

How do we determine the hyperparameters values?

Validation
dataset
Training dataset (49000) (1000) Test dataset (1000)

What happens if we don’t do it?

Overfitting Right Fit

Example overfitting, nght fit and underfitting from matlab documentation,
https://itmathworks.com/discovery/overfitting.html
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By reserving part of
the training dataset,
the so-called
validation dataset, for
tweaking
hyperparameters.

Underfitting
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We risk to tune the
parameters to work
perfectly on training data
but then not to be able to
work on any other data
input. (Overfitting)



Methods to avoid overfitting, or how to choose the best k value

Cross-validation: split the data into folds, and then try each fold as validation dataset, and then average the results.
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Crossvalidation accuracy
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. training folds - validation folds testing folds

e For each fold run the classification with all possible values of k and derive the accuracy.

e Plot the accuracy for each of the k values tested,
e |dentify which is the k-value that works best for the data we are working with
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Why K-nn is never used with images?

-Slow at test time
-Distance metrix on pixels are not informative (all images have same L2 distance to the leftmost one)

Original Boxed Shifted Tinted

Exampie of distance metrix
on images from lecture
number 2 of Fei-Fei, L1 and
Johnson and Yeung, April
2017, Stanford course on
computer vision

-Curse of dimensionality: with 3 dimensions (RGB images) it becomes soon unmanageable

KNN summary:
In image classification we start with a training set of images and labels, and must predict labels on the test set.
o K-Nearest Neighbors classifier predicts labels based on nearest training examples

e Distance metric and K are hyperparameters
e Determine hyperparameters using the validation set; run on the test set once at the very end!

[@oEe)



/i

The simplest data driven approach: a linear classifier and a loss function



Parametric approach: linear classifier

f defines a function that maps the 3072 pixels of one image into one of the K labels.

Stretching pixels in a single column

234

152

79

0.5 1.3 -1.5
0.87 0.39 -0.24
| 4rows
(labels)
on -0.21 0.56
0.97 -0.42 -0.8
’ W
iInput image N columns (image pixels)
<€

dimension of the images is D = 32 x 32
x 3 = 3072 pixels, for the example we
assume D = 3
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fzi, W,b) = Wz; + b

N elements in a single column

For every i an xi belonging to {x1.... XN} has a label yi
belonging to {y1,...yN}).

4 elements

(labels)

196.55

230.72

36.6

230.42

f(xia W) b)

RABBIT
CAT
DOG

TIER

K, the number of
rows, as for
CIFARI10, is 10 (ten
classes: dog, tier,
etc..)
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3072x1 10x1

‘—___—> J «——-$ 10 numbers giving

class scores
10 x 1

32 X332 X3 W
3072 in total parameters or weights
10 x 3072

How to interpret the linear classifier?
This is an example of the weights (column) of the linear classifier trained with the CIFAR10 dataset we saw before

plane car berd cat deer dog frog horse ship truck

Example of weights optimized for the identification of the CIFARIO classes. Figure from the course https.//cs23In.github.io/classification/
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The loss function

The loss function establishes how good the classifier is.

If we have N examples of a images xi and their corresponding labels yi, the loss function over this dataset of N
elements is given by the sum of the losses Li over each of the single examples plus a regularization term R(W):

N
L= 3 3" Lif(ei, W),0:) + AR(W)

f(xi, W) is the result of the scoring function (the predicted label)
yi is the so-called “ground truth” (the label associated to the image)

The regularization term R(W) is a term that helps to control the capacity of our model to generalize to unseen data. The
parameter lambda is another hyperparameter, called the learning rate, that is essential for the learning task.




The loss function

The loss function establishes how good the classifier is.
If we have N examples of a images xi and their corresponding labels yi, the loss function over this dataset of N
elements is given by the sum of the losses Li over each of the single examples plus a regularization term R(W):

N
L= 3 3" Lif(ei, W), 0:) + AR(W)

oo —

data loss: tries to make the meodel
predichon match the {:ra’mihg data
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The loss function

The loss function establishes how good the classifier is.
If we have N examples of a images xi and their corresponding labels yi, the loss function over this dataset of N
elements is given by the sum of the losses Li over each of the single examples plus a regularization term R(W):

N
L= 3" Li(f(w: W), 1) + AR(W)
g=1 L’W_*J

regularizahom tries to make the

model simple, to be able to work on
test data

If we remove the regularization term from the loss function, the classifiers will tend to overfit the
training data, and will loose its ability to generalize to test data or other datasets.
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The loss function

The loss function establishes how good the classifier is.

If we have N examples of a images xi and their corresponding labels vyi, the loss function over this dataset of N
elements is given by the sum of the losses Li over each of the single examples plus a regularization term R(W):

N
L= 3 3" L/ (@i, W), ) + AR(W)

What are examples of regularization terms?

Which loss function will we use?

L1 regularization
L2 regularization
Max norm
Dropout
Batch normalization

Multiclass SVM Loss (Hinge Loss)
Softmax Classifier (Cross entropy loss)




Multiclass SVM loss (Hinge Loss)

Indicating the result of the score function s = f(xi, W), we can write the Hinge loss for the sample {xi, yi}

as. . Z 0 if Si; Z S j + ]_, sy,: score of the correct category
g - Sj - Syi i 1 otherwise s;: score of the incorrect category
L; = Zmax(O, 8j — 8y, + 1)
i#]
training L(im_1) = max(0,1.23-3.54+1) + max(-2.1-3.54+1) = O
examples |
L(im_2) = max(-2.4-5.3+1) + max(0.5-5.3+1) = O
CAT 3.54 -2.4 -3.1 L(im_3) = max(-3.1-2+1) + max(1.23-2+1) = 0.23
o) ; : .
A 123 xS &g Loss over the full dataset:
L = L(im_1) + L(im_2) + L(im_3) = 0.23
TRAIN -2.1 0.5 2.0
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Softmanx classifier (Cross-entropy loss)

Given that the probability of a given label to be k given the input image xi is

e’k
Zj e

Since the loss function should minimize the negative log likelihood of the correct class, Li is:

P(Y=K‘X=£Bi)=

e’vi

L = —logP(Y = y;|X = z;) = —log(Z )
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and therefore, we can write the cross-entropy loss as:

Sy;

L; = —109(5_
j
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Recap on linear classifier and loss + score functions

regularization loss REGULARIZATION LOSS
W Siace falian 1 ¥ L1 regularization
- . data loss L2 regularization
— uf(ﬂ%, W) “ L Max norm
ZL;}t Dropout
Y 1 NI Batch normalization
1] J1 — : , Y
L=+ ZLz(f(x,, W), y:) |+ AR(W)
=1
SCORE FUNCTION: MATRIX MULTIPLY + BIAS
[ ST P T SO + l : DATA LOSS : HINGE OR SOFTMAX
‘ ' — § . L; = Zmaaz(o, Sj — Sy, + 1)
' 4 rowe 0.87 0.39 -0.24 g + 3.2 z¢.7
e | e 021 0.56 9 | 14
E e*vi
l 0.97 -0.42 -0.8 ? 28 L»i — —log( )
D, 3 €3
| W Xi b
inp't:lt' image N columns (image pixels) pidisghoc J
B (labeis)
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Learning process via optimization (and the various processes behind it)
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You can try different random weights and see which one of them works best

(Random search, typically bad results, better for iterative refinements)




You can start with a random search and then apply perturbations to that,
updating only if the loss of the perturbed state is lower than the original one.

(slightly better than before, but still far from being acceptable)
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How to calculate the gradient?

Numerical calculation Calculus
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Implement in a code the formulation of the gradient:
where X is a vector the h is an array of increments,
and f is an array of partial derivatives.

can derive the exact expression of the gradient of
the Loss function but it is more prone to errors

Usually, the way to proceed is to calculate the gradient analytically and then check with numerical gradient.

N
VwL(W) = % Z Vsz(f(SL‘z, W), y,;) -+ /\VwR(W)
$=1




How to calculate the gradient?

Numerical calculation Calculus

o a2 == 5= y P - J""'\{
§ 11 =3,1418 }/\@/:\’Hja.a
6f I f(fE + h) = f(CB) PN ]
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Implement in a code the formulation of the gradient:
where X is a vector the h is an array of increments,
and f is an array of partial derivatives.

can derive the exact expression of the gradient of
the Loss function but it is more prone to errors

Usually, the way to proceed is to calculate the gradient analytically and then check with numerical gradient.

N
VwL(W) = & 3 VwLi(f(si, W), u:) + AVw R(W)

The procedure of iteratively calculating the gradient and then performing a parameter update is called gradient descent.
Calculating the gradient for the entire loss function is expensive when N is large
We approximate the sum over N to a sum over a subset of the full total of the examples, i.e. on a minibatch of 32/64/128
elements of the sum.




Backpropagation

Goal: derive analytic gradient of the loss function with respect to the weights W

Vw L(W)

Backpropagation is a way to calculate gradients of given functions, by applying recursively the chain rule.
m— / R /
hz) = f(g(z))  K(z) = f(9(z))g (z)

Backpropagation consists of two main parts:
» Forward pass: the input goes through the network and provides a prediction.
 Backward pass: from the calculation of the gradient of the loss function at the final layer, recursively by applying the chain
rule weights get updated in the network.




Example: we build an easy example, with the function f(z) = (z +y)z

where we can define g = x + y, and it will become: f(g,2) =gz g=z+y

X
f(z) = (z+y)z
g=z+y
y e — +
Z
dq of
— =1 —=Z
we can calculate all the partial derivatives: Ox 0 q
% _, 9
dy 5z 4= FTY
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For the way backward, we apply the chain rule

of 9q _
a—q‘b;—z*l —2
X
g=z+vy
of
55 z
Y —— +

ofdq .
aqay_z*l 2

BACKWARD

f(z)

of
of

(z+y)=z



Every gate in the diagram gets an input and, based on that, it can provide the output and the gradient of its output
with respect to its inputs

local gradients

oL
0z
this operation do not depend €
on the rest of the circuit in
which the gate is located. 2z

because of the chain rule, the gate multiplies the gradient of the loss function
with respect to its output (blue circle) for the local gradients of its inputs (red
circle), and passes it backwards to its inputs.
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that’s it
for
today!
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